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Abstract

We present graphical tools for visualizing scales of multivariate density

estimates. The graphical tools visualize the shapes of the estimates

and they may be applied in mode detection. We consider multiframe

mode graphs which visualize the locations of the modes of multivariate

density estimates corresponding to an interval of smoothing parameter

values. We define a branching map of level set trees which shows how

the level sets of the estimates in a scale of estimates are decomposing to

separated regions as function of the level. In addition it visualizes the

excess masses associated with the separated regions of the level sets. A

scale and shape visualization table contains besides a multiframe mode

graph and a branching map also 4 additional windows. With this table

we may zoom in to the scale of estimates by choosing an estimate for a

closer inspection. Second, we may zoom in to the estimate by choosing

a level set of the estimate for a more detailed visualization. The

visualization tools which we present may be applied with a number of

different density estimators. We give examples of the application of the

tools with kernel estimates and with multivariate adaptive histograms.

Key Words: Level set tree, Mode tree, Nonparametric density estimation,
Scale space analysis.
Short title: Visualization of density estimates
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1 Introduction

We are interested in the shape of a multivariate density function. In partic-
ular, we are interested to detect the modes of the density f : Rd → R. We
are given a sample X1, . . . , Xn ∈ Rd of identically distributed random vec-
tors with density f . We will use nonparametric density estimators to shape
detection.

In one and two dimensional cases an inspection of plots and perspec-
tive plots of nonparametric density estimates, for example kernel estimates,
gives a powerful tool for shape detection. When the dimension is greater or
equal to three, then one needs more sophisticated visualization tools to make
nonparametric density estimation useful in shape detection.

In one and two dimensional cases the “art of smoothing” has typically
consisted from the inspection of the change of the estimates as the smoothing
parameter changes. Thus we need visualization tools which would make it
possible conveniently to scan through a scale of smoothing parameters. Such
tools may be used in the spirit of scale space analysis, discussed by Chaudhuri
and Marron (2000).

A mode tree is a useful visualization tool to help scanning through es-
timates. For one and two dimensional cases the mode tree was introduced
in Minnotte and Scott (1993) to visualize the number and the locations of
the modes as the smoothing parameter is changed. Marchette and Wegman
(1997), Minnotte, Marchette and Wegman (1998), Scott and Szewczyk (2000)
develop further the one dimensional mode tree.

We define a multiframe mode graph to be used as a road map directing
our scanning through a scale of estimates. A multiframe mode graph makes
a mode graph separately for each coordinate and uses colors to identify the
modes across different windows. We want to apply multiframe mode graphs
not only for kernel estimators but for any estimator whose smoothness is
controlled with a real valued smoothing parameter. We use the term “graph”
and not the term “tree” because we consider such scales of estimates where
the number of modes is not monotonic as the function of the smoothing
parameter, unlike in the case of univariate kernel estimates with the standard
Gaussian kernel.

A mode graph does not visualize the relative importance of the modes.
For this purpose we use a branching map. A branching map is a perspective
plot of a 2D function whose surface is colored. With the colors and with
the values of the function we visualize both the levels where the level sets
of the estimates are decomposing to separate regions and also the excess
masses associated with those separate regions, simultaneously for a scale of
estimates. The definition of the branching map is based on the concept of a
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level set tree of a function. Level set trees were introduced in Klemelä (2004).
A level set tree is a tree of the separated components of the level sets of a
function.

The excess mass associated with a separated region of a level set is the
volume of the area which the density function delineates over the given level,
in the given separated region. Usually excess masses have been associated
with the modes of a density function and not with the separated regions of
level sets. For example Hartigan (1987), Müller and Sawitzki (1991) and
Minnotte (1997) have applied excess masses in cluster analysis and mode
testing. Minnotte and Scott (1993) proposed to visualize the probability
mass of the mode through the widths of the mode traces. We argue that it is
fruitful to change the viewpoint from the mode testing to the testing of the
branching of the level set tree. Thus we visualize the excess masses of such
nodes of the level set tree of the estimate which are a result of the branching
of the level set tree. The branching map may be seen as a first step for
developing a mode testing approach based on level set trees. Chaudhuri and
Marron (1999) and Godtliebsen, Marron and Chaudhuri (2002) present SiZer
for inference and visualization based on scales of one and two dimensional
kernel estimates. We may view a branching map as a multivariate excess
mass based version of SiZer, but a branching map does not contain a formal
mode testing component.

Mode graphs and branching maps give an overview of a scale of estimates.
We need tools which would enable us to conveniently choose estimates from
the scale and visualize those estimates. A scale and shape visualization table
is a dynamic tool to fulfill this purpose. It consists of 6 windows. The first
2 windows show one frame of a multiframe mode graph and a branching
map. We may choose an estimate from the scale and show in the second 2
windows a volume plot of the estimate, and one frame of a barycenter plot
of the estimate. A volume plot shows a plot of a 1D function which is mode
isomorphic to the original function. A barycenter plot shows the barycenters
of the level sets of the function. Furthermore, one may choose a level set of
the estimate, and visualize in the last 2 windows the shape of the level set
with a radius plot and the location and orientation of the level set with a
location plot. A volume plot and barycenter plot were defined in Klemelä
(2004) and a radius plot and location plot were defined in Klemelä (2006).
A short description and examples of these plots are given in Section 4.

The density estimation based approach to the mode and shape detection
requires the availability of efficient density estimators. Kernel estimators are
one of the most efficient estimators in moderate dimensional cases. However,
kernel estimates are based on local averaging and suffer from the curse of
dimension. For high dimensional data we have to apply different estimators.
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Thus we give examples of the application of the tools also in the case of
multivariate adaptive histograms.

In Section 2 we define and illustrate multiframe mode graphs. In Section
3 we define and illustrate branching maps. Section 4 introduces the scale and
shape visualization table. Section 5 illustrates the application of the graphical
tools for the case of kernel estimators and adaptive histograms. Section 6
contains a discussion. The appendix gives details of the construction of a
multiframe mode graph.

Computations and graphics in this article have been made with R-packages
”denpro” and ”delt” which may be downloaded from http://denstruct.net.

2 Multiframe mode graph

2.1 Definition of a multiframe mode graph

In one and two dimensional cases the mode tree was introduced by Minnotte
and Scott (1993). In a one dimensional mode tree the locations of the modes
of kernel estimates are plotted when the smoothing parameter ranges over an
interval. A two dimensional mode tree was defined to be a three-dimensional
plot of the mode locations and bandwidth. A multivariate mode tree may
also be defined as a tree which shows how the number of modes of a kernel
estimate is increasing as a function of the smoothing parameter, without any
spatial information. This kind of multivariate mode tree was considered in
Scott and Szewczyk (2000), where it was applied to clustering.

We will define multivariate mode graphs as plots where we plot a one
dimensional mode graph separately for each coordinate. A tree in the d-
dimensional space is a 1D-structure which can be visualized with d projec-
tions. In order the projections to be useful one needs to identify the same
node in different windows. One needs only to label the leaf nodes to identify
uniquely all the nodes in different windows. We may however considerably
ease the identification with a coloring scheme. It would not be feasible to
choose a separate color for each node, but we get a useful coloring by choosing
a separate color for each branch of the tree.

A multiframe mode graph is associated to a collection of density estimates

f̂h : Rd → R, h ∈ H (1)

where H ⊂ R is a finite set of smoothing parameters. Denote with

M
(h)
1 , . . . , M (h)

mh
∈ Rd, h ∈ H, (2)
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the locations of the modes of the estimates, where mh is the number of modes
of the estimate with smoothing parameter h, M

(h)
j = (M

(h)
j,1 , . . . , M

(h)
j,d ) ∈ Rd

is the jth mode of the estimate with smoothing parameter h, j = 1, . . .mh.
We interpret h as if it were the smoothing parameter of the kernel estimator:
small values of h correspond to undersmoothed estimates and large values of
h correspond to oversmoothed estimates.

Definition 1 A multiframe mode graph, associated to a scale of density
estimates (1) with mode locations (2), consists of d windows.

• The x-axis of the i:th window corresponds to the i:th coordinates of the
modes and the y-axis of the windows corresponds to the scale H. That
is, the i:th window, i = 1, . . . , d, consists of the plot of points

(

M
(h)
k,i , h

)

, h ∈ H, k = 1, . . . , mh,

• To identify the same mode between different windows we use the same
color to plot the same mode in different windows, but different colors
to plot the different modes with the same h-value. That is, for each
h ∈ H, k = 1, . . . , mh, points

(

M
(h)
k,i , h

)

, i = 1, . . . , d,

have the same color and for each h ∈ H, i = 1, . . . , d, points
(

M
(h)
k,i , h

)

, k = 1, . . . , mh,

have different colors.

Tree or graph structure. In Definition 1 we did not define a tree or
a graph. By adding to the mode graph parent-child connections we make
the plot more easily interpretable. However, there does not seem to exist a
distinguished choice for the parent-child relations, and thus we define these
relations separately, instead of defining them in the proper definition of a
multiframe mode graph. We give a rule for determining parent-child relations
in Appendix A.

Coloring. Definition 1 gave a minimal condition for the coloring. We use
the parent-child relations to enhance coloring. The coloring of the nodes
is determined so that we choose first distinct colors for the modes at the
root level, that is, for the modes corresponding to the largest smoothing
parameter. For one of the children we choose the same color as that of the
parent. For the other children we choose new distinct colors. The precise
rule is given in Appendix A.
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Figure 1: Frame a) shows the sample together with a contour plot of the
density from which we generated the sample. Frames b-h) show contour plots
of 7 kernel estimates with decreasing smoothing parameters.

2.2 Example

2.2.1 Scale of estimates

Figure 1a shows a contour plot of the density which we use for the illus-
tration, and a sample of size 200 generated from this density. We con-
struct a scale of kernel estimates. We apply Bartlett-Epanechnikov prod-
uct kernel defined by (x1, . . . , xd) 7→ (3/4)dΠd

i=1 max{0, 1 − x2
i }. Figure 1b-

h show 7 kernel estimates corresponding to smoothing parameter values
(2.30, 1.59, 1.20, 1.04, 0.94, 0.89, 0.85).

2.2.2 Mode graph

Figure 2 illustrates a multiframe mode graph, associated to a scale of two
dimensional kernel estimates. The kernel estimates were constructed from
a sample of size 200 from the 3-modal density shown in Figure 1a. We
applied a grid of 100 smoothing parameters in interval [0.85, 2.3]. The grid
was not equally spaced but we used a logarithmic spacing and the h-axis has
a logarithmic scale.

6



0 1 2 3 4

1.
0

1.
5

2.
0

sm
oo

th
in

g 
pa

ra
m

et
er

a) 1st coordinate

−4 −2 0 2

1.
0

1.
5

2.
0

sm
oo

th
in

g 
pa

ra
m

et
er

b) 2nd coordinate

Figure 2: A multiframe mode graph of the scale of kernel estimates defined
in Section 2.2.1.

Figure 2 shows that when we use smoothing parameter h = 2.3, then
the estimate has one mode. The node corresponding to this mode is labeled
with red. The multiframe mode graph shows that the location of this mode
is ≈ (1.8, 2.8). When the smoothing parameter is decreased, then the blue
and green branches appear. The red, blue, and green branches correspond
indeed to the true modes of the density. The blue mode is at the location
≈ (3.5, 0) and the green mode is at the location ≈ (0, 0). The fourth branch
is turquoise and it appears at a tail region, when h ≈ 1.5. Finally, when the
smoothing parameter is h = 0.85, there are 7 branches and thus 7 modes.

3 Branching map of a scale of level set trees

One may think about a function f : Rd → R in two ways: as a mapping
x 7→ f(x) which assigns value f(x) to a vector x ∈ Rd, or as a mapping
λ 7→ {x ∈ Rd : f(x) ≥ λ} which assigns a level set to a level. A mode
graph considers a function in the first way but a map of branches considers
a function in the second way. Since a level is real valued the change of the
viewpoint makes it possible to visualize much information from a scale of
functions in a concentrated way.

A branching map of level set trees of estimates (in a scale of estimates)
is a perspective plot of a 2D function whose arguments are the level (density
value) and the smoothing parameter, and the values are the excess masses of
the nodes of the level set trees of estimates for a given smoothing parameter
and at a given level. A map of branches shows for each estimate the levels
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where the level sets of the estimate are decomposing to separated compo-
nents, as we move to the higher levels, and it visualizes also the probability
masses associated with these separated components. The probability masses
(excess masses) associated to the separated regions of level sets measure the
relative importance of the modes and bundles of modes. To define a branch-
ing map we define 4 preparatory concepts: (1) level set tree, (2) excess mass,
(3) branching node, and (4) branching profile.

(1) Level set tree. A level set tree is a tree whose nodes represent the
separated regions of the level sets of the function. The root nodes of the
level set tree correspond to the separated regions of the lowest level set of
the function. The child nodes of a given parent node correspond to the
separated regions of the level set with one step higher level than the level
of the parent node. A level set tree is defined in Klemelä (2004). Figure 3a
shows a level set tree of the estimate in Figure 1d. The nodes corresponding
to the 3 modes of the estimate are labeled as M1-M3.

(2) Excess mass. We want to condense the information contained in a
level set tree in order to make it possible to represent information concerning
a scale of multivariate estimates with a single 2D function. The first concept
we use for the condensation of the information is the excess mass associated
with a node of a level set tree, as defined in Klemelä (2004). This is the
volume of the area which the density delineates over the level of the node,
on the separated region of the level set associated with the node:

∫

A
(f − λ),

where f is the density (estimate) and A is a separated component of the level
set with level λ ≥ 0. In Figure 3a we have annotated 5 of the nodes with
their excess masses.

(3) Branching node. The second concept we need for the condensation
of the information contained in a level set tree is the concept of a branching
node of a level set tree.

Definition 2 Branching nodes of a level set tree of a function Rd → R are
the nodes which have more than one child.

Figure 3a shows the 2 branching nodes as red rectangles. The children of
the branching nodes and the root node are shown as blue triangles. The tree
which consists only of the root nodes of a level set tree, from the branching
nodes, and from the children of the branching nodes is closely connected to
the cluster tree as defined in Stuetzle (2003).
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Figure 3: Frame a) shows a level set tree of the density estimate shown in
Figure 1d. Frame b) shows the branching profile corresponding to the level
set tree in frame a). The y-axis in the frame a) is the same as the x-axis
in the frame b). These axes show the levels (density values) of the density
estimate.

(4) Branching profile. Next we define a branching profile of a level set
tree. It is a 1D plot which visualizes the number and the levels of branching
of a level set tree of a function. It visualizes also the excess masses associated
with the branching nodes and with the children of the branching nodes of
a level set tree. The values of the plotted function are equal to the excess
masses of the branching nodes. We divide the graph of the function between
two levels of branching to two bands, which are colored in red and blue. The
lengths of the two bands are proportional to the excess masses of the children
of the branching nodes, that is, to the excess masses of the separated regions
which are separating at this level.

Definition 3 A branching profile of a level set tree of density f : Rd → R
is a plot of the colored excess mass function, defined in the following.

Let b1, . . . , bM be the branching nodes of the level set tree of f . Let λm

be the level of bm, m = 1, . . . , M . We assume that the branching nodes are
ordered so that 0 < λ1 < · · · < λM < ‖f‖∞, where ‖f‖∞ = supx∈Rd f(x).
Denote with excmas(b) the excess mass of node b.

• Define the excess mass function e : [0,∞) → [0, 1] to be the function
which gives for every level of branching the excess mass of the branching
node. The function remains constant until the next level of branching.
The function is equal to 1 at the origin. Thus we define the excess mass
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function by

e(t) =
M

∑

m=0

excmas(bm)I[λm,λm+1)(t),

where we denote λ0 = 0, λM+1 = ‖f‖∞, and excmas(b0) = 1.

• We color each constant segment of the graph of the excess mass func-
tion so that the colors give information on the excess masses of the
children of the branching nodes. We need to take into account that
a level set tree may have several root nodes. Let r1, . . . , rL be the root
nodes of the level set tree of f . Define 2 vectors of colors: rootpaletti =
(seagreen, violet, . . .) and paletti = (red, blue, green, . . .).

– Divide interval [0, λ1) to L subintervals so that l-th subinterval I0l

has length excmas(rl)/λ1, l = 1, . . . , L. Choose color col(I0l) =
rootpaletti(l) for each interval, assuming that the intervals are
ordered so that length(I01) < · · · < length(I0L).

– Let node bm has N children c1, . . . , cN . Divide interval [λm, λm+1),
m = 1, . . . , M , to N subintervals so that i-th subinterval Imi has
length excmas(ci)/(λm+1 − λm), m = 1, . . . , M , i = 1, . . . , N .
Choose colors col(Imi) = paletti(i) for each interval, assuming that
the intervals are ordered so that length(Im1) < · · · < length(ImN).

• The branching profile is a plot of the graph (λ, e(λ)), λ ∈ [0, ‖f‖∞],
where e(λ) has color col(I) when λ ∈ I.

Figure 3b shows the branching profile corresponding to the level set tree
in Figure 3a. The red color indicates always a new branch in the level set tree.
Note that the absolute lengths of the color bands do not contain information,
but the relative length of a red and blue band tells how the excess mass is
distributed over the two branches.

Note the delicateness in Definition 3. We should not define the excess
mass function e : [0,∞) → [0, 1] so that it gives for a level λ the probability
mass of the level set with level λ: e(λ) 6= Pf({x ∈ Rd : f(x) ≥ λ}), where Pf

is the probability measure corresponding to density f . Indeed, we have to
take into account that the level set tree has several branches corresponding
to the various modes and the total excess mass does not give information
about the individual branches.

(5) Branching map. Now we are ready to define a branching map. By
combining together the branching profiles of level set trees of estimates in a
scale of estimates we get the branching map.

10



level

0.00

0.02

0.04

0.06
h

1.0

1.5

2.0

excess m
ass

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: A map of branches of the scale of kernel estimates defined in
Section 2.2.1.

Definition 4 A branching map of a scale of level set trees, associated with
the scale of estimates in (1), is the perspective plot of the 2D function B :
[0,∞) × H → [0, 1] whose slices B(·, h) : [0,∞) → [0, 1] are the branching
profiles of the estimates, defined in Definition 3

Figure 4 shows a map of branches, constructed from the same scale of
kernel estimates as the mode graph of Figure 2. The map of branches has
color seagreen when h is large and this means that the estimates are unimodal
for large h. The appearence of red bands signals the appearence of modes:
a red band shows where the level set is decomposing to separate regions.
One branching increases the number of modes by one. There appears two
red bands almost simultaneously (when h is decreased) and this means that
there appears three modes (1st branching implies two modes, 2nd branching
implies 3 modes, . . . ). When h is further decreased, a third red band appears
at a low level, and this means that a 4th mode appears. The relative widths
of red and blue bands tell how the excess mass is distributed among the two
modes (among the “old” mode and the “new” mode). The height of the
surface shows the total remaining excess mass at this level, to be distributed
among the modes.
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One sees that the 3 modes, which appear when h ≈ 2, emerge at relative
high levels 0.02− 0.03, and the roots of the branches leading to these modes
have non-negligible excess masses. The 4th mode, which appears when h ≈
1.5, emerges at a low level and it has a small excess mass. The rest of the
modes appear at moderate levels and they have small excess masses.

Mode detection. In branching maps we focus on the branching structure
of the level set tree. Thus branching maps are useful when we apply such an
approach to mode detection where we consider whether the branches of the
level set tree of a density estimate are really a true feature of the underlying
density. See the discussion on mode testing in page 20.

4 Scale and shape visualization table

Definition. We define a dynamic tool for visualization of a scale of mul-
tivariate density estimates. We call this tool a scale and shape visualization
table. The tool accompanies a mode graph and a branching map with vi-
sualizations of level set trees of the estimates and with visualizations of the
shapes of the level sets of the estimates, allowing us to zoom into the shape
of the estimates.

A scale and shape visualization table contains 6 windows and a control
window. The first window shows one frame of a multiframe mode graph and
the second window shows a branching map. The 3rd window shows a volume
plot of one of the estimates in the scale and the 4th window shows one frame
of a barycenter plot of the estimate. The 5th window shows a radius plot of
a level set of the estimate and the 6th window shows a location plot of the
level set of the estimate.

Figure 5 shows a screenshot of a scale and shape table corresponding to
the scale of kernel estimates which was visualized with a mode graph im
Figure 2 and with a map of branches in Figure 4.

Components of the table. Multiframe mode graphs were defined in Sec-
tion 2 and branching maps were defined in Section 3.

A volume plot is a plot of the volume transform of a function. A volume
transform of a multivariate function is a one dimensional function which is
mode isomorphic to the original multivariate function. This means roughly
that the volume transform has the same number of modes of the same size
as the original function. The size of the modes is measured with their excess
masses. A barycenter plot visualizes the barycenters of the level sets of a
multivariate function, by showing the d projections to the coordinate axis
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of a skeleton of the function. A skeleton of a function is a branching curve
which goes through the barycenters of the level sets. A volume plot and
barycenter plot were defined in Klemelä (2004).

A radius plot is a plot of the radius transform of a connected set. A radius
transform of a connected set is a one dimensional function which is shape
isomorphic to the original multivariate set. This means roughly that the
radius transform has the same number modes of the same size as the original
set has extensions. A radius transform of a set is roughly equivalent to a
volume transform of a boundary function of the set. A location plot visualizes
the location and the orientation of the set, by showing the d projections to
the coordinate axis of a skeleton of the set. Note that location plots and
barycenter plots use the same kind of projection and coloring technique as
mode graphs. A radius plot and location plot depend on the chosen reference
point, which is typically the mode of the density or the barycenter of the level
set. A radius plot and location plot were defined in Klemelä (2006).

Dynamics. We may change the windows of the table through mouse clicks.
We choose from the d coordinates the coordinate whose frame is shown in
the window of the mode graph, we choose from the scale of estimates the
estimate whose volume plot and barycenter plot are shown, we choose from
the d coordinates the coordinate of the barycenter plot, we choose the level
of the level set whose radius plot and location plot are shown, and we choose
from the d coordinates the coordinate of the location plot. In addition, we
may rotate the map of branches, zoom into the volume plot, and change the
reference point for the radius and location plot. Interactivity is implemented
with the “locator” function of R. For example, the rotation is implemented
by defining a grid on the polar coordinates and through a mouse click one
moves one step on that grid.

Example. Figure 5 shows a scale and shape visualization table. The mode
graph shows the 1st coordinate and the mode labels M1, M2, M3 are at
the height of the smoothing parameter h = 1.562, which is the smoothing
parameter of the kernel estimate visualized in frames III − V I. The cor-
respondence of the modes between the volume plot and the mode graph is
shown with the coloring and with labels M1, M2, M3. The coloring and the
labeling connects also the barycenter plot to the volume plot and to the mode
graph. The colors at the lower levels of the volume plot and the barycenter
plot are not connected to the coloring of the mode graph. The barycenter
plot shows the first coordinate. The radius plot visualizes the level set with
level 0.005, the location plot shows the first coordinate, and the reference
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point in these plots is the barycenter of the level set. The colors connect the
radius plot and the location plot together but these colors are not related to
the colors in the other plots.

5 Examples

5.1 Kernel estimator

As an example we consider the two dimensional lipid data. The data set
consists of the 320 lipid (cholesterol and triglyceride) levels of men with heart
disease. This data was analyzed by Scott, Gotto, Cole and Gorry (1978) and
Minnotte and Scott (1993). Logarithmic transformation is applied for the
both variables and marginal data is standardized to have sample variance 1.
We applied the standard Gaussian kernel in the kernel estimates.

Figure 6 shows the 2 frames of the mode graph. One sees that the two
first new modes (blue and green nodes) appear at tail regions, for smoothing
parameter values h ≈ 0.58 and h ≈ 0.5. Then the 4th and the 5th modes
(orange and turquoise nodes) appear simultaneously, when h ≈ 0.38. The
orange mode is in the central region and the turquoise node is at a tail region.

Figure 7 shows a map of branches for the lipid data. One sees that the
two first new modes appear at low levels, and have very small excess masses.
One sees that from the 4th and 5th modes one of these modes emerges at a
low level and has a very small excess mass, but the other mode appears at
a higher level and although its excess mass is small, the excess mass is more
evenly distributed among the emerging mode and the old mode.

Figure 8 shows perspective plots of the estimates for the smoothing pa-
rameters h = 0.36 and h = 0.46. Note that the small modes at the tail
regions are difficult to notice from the perspective plot.

5.2 CART histogram

We consider multivariate adaptive histograms, which work in some high di-
mensional cases where the kernel estimator fails. These CART histograms
are otherwise similar to regression trees defined in Breiman, Friedman, Ol-
shen and Stone (1984), but the regressogram is replaced by the histogram
and the sum of squared errors is replaced by the negative log-likelihood. The
CART histograms are based on data dependent partitions. We find the data
dependent partition by first constructing a collection of partitions by min-
imizing the negative log-likelihood in a myopic fashion, and then choosing
the final partition from this collection by minimizing a complexity penalized
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Figure 5: A screenshot of a scale and shape visualization table corresponding
to the scale of estimates in the mode graph of Figure 2 and in the map of
branches of Figure 4.
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Figure 6: A multiframe mode graph for the lipid data; a) Cholesterol-frame;
b) Triglyceride-frame.
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Figure 7: A map of branches for the lipid data.
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Figure 8: Perspective plots of kernel estimates for the lipid data.

likelihood criterion, where the complexity is taken to be the number of sets
in the partition. The smoothing parameter of the estimator is taken to be
the number of sets in the partition determining the histogram.

We consider a modification of the simulation example which was intro-
duced by Friedman, Stuetzle and Schroeder (1984) in the connection of pro-
jection pursuit density estimation. We try to estimate the density which is
the equal mixture of 5 dimensional densities N(µi, Σ), i = 1, 2, 3, where

µ1 = (0, c, 0, 0, 0), µ2 = (3,−c, 0, 0, 0), µ3 = (−3,−c, 0, 0, 0),

c = 33/2/2 ≈ 2.6, and Σ = diag(1, 1, 7, 7, 7). Thus we add 3 pure noise
dimensions, that are independent normal random variables with zero mean
and variance 7, to a two dimensional random vector whose density function is
the equal mixture of three two-dimensional standard Gaussian distributions
with means (0, c), (3,−c), (−3,−c). The number c was chosen in such a way
that also the variances of the first two marginal distributions are 7. We will
generate a sample of size 225 from this density. See also Scott and Wand
(1991) who made simulations with this example, applying kernel estimators.

Figure 9 shows a multiframe mode graph. The y-axis of the mode graph
shows the opposite number of the number of sets in the partitions defining
the histograms. The mode graph shows that the estimates have 3 modes
(red, blue, light green) over a large range of smoothing parameter values.
In fact, when the partition has ≈ 10 − 40 sets, then the histograms have 3
modes. The locations of these 3 modes are close to the locations of the true
modes, when the number of sets is ≈ 10 − 30. When the partition has ≈ 60
sets, then the histogram has 6 modes.
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Figure 9: CART-histogram: a multiframe mode graph for the projection
pursuit example. The first two frames are most important because they
show the signal dimensions.
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Figure 10: CART-histogram: a map of branches for the projection pursuit
example.

Figure 10 shows a branching map corresponding to the mode graph in
Figure 9. From the branching map one sees that the excess masses related
to the modes appearing when the number of sets in the partitions is larger
than 40 is much smaller than the excess masses of the 3 previous modes.

6 Discussion

Mode trees. Minnotte and Scott (1993) introduces mode trees and visu-
alizes excess masses with these trees. They draw the enhanced mode tree by
plotting black regions centered at each mode location and whose horizontal
width at each level of the smoothing parameter h represents the excess mass
of the mode. We have introduced visualization tools with two improvements
to the classical mode tree. First, we introduce multiframe mode trees which
make it possible to draw mode trees in arbitrary dimension. Secondly, we
visualize excess masses with branching maps and volume plots which contain
more information than merely the excess masses associated with the modes
of the estimate.
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Density estimators. Previously mode trees have been preferred to be
drawn for kernel estimates with the standard Gaussian kernel. This choice
guarantees in the univariate case that the number of modes is monotonically
increasing when the smoothing parameter is decreasing. We have illustrated
that one does not have to restrict oneself to this particular estimator. We
may use kernel estimates with the Bartlett-Epanechnikov product kernel for
computational reasons and we may use adaptive histograms to make high
dimensional density estimation more efficient. For reasonable estimators the
range of smoothing parameter values where the number of modes is not
increasing monotonically is typically small and the non-monotonicity of the
number of modes does not substantially decrease the interpretability of the
mode graphs.

Mode testing. Minnotte (1997) introduces a formal testing procedure as-
sociated with a mode tree. The testing procedure relies on critical smooth-
ing parameter values, which are such values where new modes appear. Thus
the testing procedure tends to be restricted to the application of univariate
kernel estimates with the standard Gaussian kernel, since this is the only
known estimator where the number of modes is growing monotonically as
the smoothing parameter is decreasing.

A natural alternative is to consider each single density estimate sepa-
rately, to look at the levels where the level sets are splitting, and to test
whether the splitting is a real feature of the underlying density. At each
branching node of the level set tree we calculate the excess masses of the
children and make a judgment whether the excess masses are so large that
one would not expect them to arise due to random fluctuations, for the avail-
able sample size. The testing is started at the branching nodes closest to the
root nodes and one proceeds recursively towards the upper levels. Only if
the null-hypothesis of no branching is rejected, one needs to proceed further
towards the upper levels. Figure 11 illustrates the approach. Frames a) and
b) show a case where we first test the existence of mode bundle A and mode
B, and if these exist, then we proceed to test the existence of modes C and
D. Frames c) and d) show a case where it could happen that mode bundle
A has so small excess mass that it is not detected, and then one does not
proceed to test the existence of modes C and D.

With this approach we are free to apply estimators which are such that the
number of modes is not monotonic with respect to the smoothing parameter
value. We have not considered in this article formal mode testing procedures.
We have only visualized the branching structure; associating a formal mode
testing procedure to a branching map would give us a multivariate excess

20



−2 0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

A B

−2 0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25 C D

−1 0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

A

B

−1 0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

C D

Figure 11: A principle of mode testing. Frames a) and b) show a case
where one could easily detect mode bundle A and mode B, and proceed to
test the existence of modes C and D. Frames c) and d) show a case where
the detection of mode bundle A and mode B is difficult and one might not
proceed to test the existence of modes C and D.

mass version of the SiZer.

Single bandwidth. We have assumed in this article that the density esti-
mator has a single real valued smoothing parameter. One has suggested more
flexible kernel estimators with a vector or a matrix of smoothing parameters.
These improvements of kernel estimates are useful when one needs to choose
one estimate (say, for presentation purposes), but since we go through all
values of the smoothing parameter, we can detect many features with a real
valued smoothing parameter. Even in the univariate case one would like to
use spatially adaptive smoothing parameters, but this is not needed when
one goes through the complete scale of estimates, as pointed out in Chaud-
huri and Marron (2000). Standardization of the scales should however be
used in many cases.

On the other hand, when one uses methods of complexity penalization,
like CART histograms, then the spatial adaptivity and adaptivity across the
dimensions is handled by choosing a flexible class over which a minimizer of
the complexity penalized empirical risk is searched. In the case of CART his-
tograms this class is the class of histograms whose partition can be obtained
by a recursive splitting of the sample space. The amount of penalization is
the real valued smoothing parameter. (In the case of CART histograms this
is equivalent to taking the number of sets in the partition to be the smoothing
parameter).
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Klemelä, J. (2006), ‘Visualization of multivariate density estimates with
shape trees’, J. Comput. Graph. Statist. 15(2), 372–397.

Marchette, D. J. and Wegman, E. J. (1997), ‘The iterated mode tree’, J.
Comput. Graph. Statist. 6, 143–159.

Minnotte, M. C. (1997), ‘Nonparametric testing of the existence of modes’,
Ann. Statist. 25, 1646–1660.

Minnotte, M. C., Marchette, D. J. and Wegman, E. J. (1998), ‘The bumpy
road to the mode forest’, J. Comput. Graph. Statist. 7, 239–251.

Minnotte, M. C. and Scott, D. W. (1993), ‘The mode tree: a tool for visu-
alization of nonparametric density features’, J. Comput. Graph. Statist.
2, 51–68.

22



Müller, D. W. and Sawitzki, G. (1991), ‘Excess mass estimates and tests of
multimodality’, J. Amer. Statist. Assoc. 86, 738–746.

Scott, D. and Szewczyk, W. F. (2000), ‘The stochastic mode tree and clus-
tering’. To appear.

Scott, D. W., Gotto, A. M., Cole, J. S. and Gorry, G. A. (1978), ‘Plasma
lipids as collateral risk factors in coronary heart disease - a study of 371
males with chest pain’, J. Chronic Diseases 31, 337–345.

Stuetzle, W. (2003), ‘Estimating the cluster tree of a density by analyzing
the minimal spanning tree of a sample’, J. Classification 20(5), 25–47.

A The parent-child relations for a mode graph

Let H = {h1, . . . , hL}, where h1 < · · · < hL, be the set of smoothing pa-
rameters. Denote with Mh the set of modes corresponding to smoothing
parameter h ∈ H :

Mh = {M
(h)
1 , . . . , M (h)

mh
}.

We assume given a procedure vectormatch which finds for two finite sets of
vectors X, Y ⊂ Rd, #X ≤ #Y, an injective mapping vm : X → Y. The
injectivity means that vm(x1) 6= vm(x2), when x1 6= x2.

1. The modes in MhL
, corresponding to the largest smoothing parameter

hL, are the root nodes. The modes in Mh1
are leaf nodes.

2. We define child nodes for the modes in Mhi
, i = L, . . . , 2.

(a) Assume that #Mhi
≤ #Mhi−1

: the number of modes is at this
step increasing as the smoothing parameter is decreasing. (This
is the usual case.)

Let X = Mhi
and Y = Mhi−1

.

If vm(x) = y, then y is a child of x. The color of y is the same as
that of x.

Let M be a mode which had not a parent assigned to it: M ∈
Y \ {vm(x) : x ∈ X}. We let the closest member in X to be the
parent of M . We choose a new color for M .

(b) Assume that #Mhi
> #Mhi−1

: the number of modes is at this
step decreasing as the smoothing parameter is decreasing. (This
is the unusual case.)
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Figure 12: Finding an injection vm : X → Y, where X = {x1, x2} and
Y = {y1, y2, y3}. Frame a) shows a conflict where x1 has y1 as its closest
and x2 has y1 as its closest. Frame b) shows a suboptimal resolution of the
conflict. Frame c) shows a better resolution of the conflict.

Let X = Mhi−1
and Y = Mhi

.

If vm(x) = y, then y is the parent of x. The color of x is the same
as that of y.

Let M be a mode which had not a child assigned to it: M ∈
Y \ {vm(x) : x ∈ X}. Mode M is a leaf node of the mode tree.

It is left to describe the procedure vectormatch for finding injection vm.
Function vm should be such that x and vm(x) are close. The number of all
injections is

#Y · (#Y − 1) · · · (#Y − #X + 1),

which is so large number that one has to find a suboptimal solution. When
we find for each x ∈ X the closest y ∈ Y, then we do not get an injective
mapping vm in all cases. One has to find a way to resolve the conflicts. If x1

and x2 are competing over y, that is, x1 has y as its closest in Y and x2 has y
as its closest in Y, then a simple may to resolve the conflict would be to take
vm(x1) = y if ‖x1 − y‖ ≤ ‖x2 − y‖, and vm(x2) = y otherwise. This might
lead to a bad overall matching, see Figure 12. We have defined the procedure
vectormatch so that one resolves a conflict by looking such matching pairs
that both x1 and x2 find a relatively good match. One fixes the better of
these matches and continues by finding for each remaining x ∈ X the closest
remaining y ∈ Y. If there is a conflict, one resolves it as before, otherwise
we are done. The precise algorithm is given in the technical report.
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B Procedure vectormatch

We give a pseudo code of the procedure vectormatch for finding vm.

1. For each x ∈ X find the closest y ∈ Y in the Euclidean metric, denote
vm1(x) = y.

2. If #{x ∈ X : vm1(x) = y} = 1 for each y ∈ Y, then we return
vm = vm1. (If vm1 is injective then we are done.)

3. Else

(a) Set X0 = X and Y0 = Y to be the sets of available vectors.

(b) Repeat until #A(y) = 1 for each y ∈ Y0, where A(y) = {x ∈ X0 :
vm1(x) = y}.

i. Set B = ∪{A(y) : y ∈ Y0, #A(y) > 1} to be the set of
vectors x ∈ X0 which have competitors.
For each x ∈ B, let vm2(x) be the 2nd closest to x in Y0,
after vm1(x).

ii. We go through all ordered subsets (x, z) of size 2 from B, and
calculate

crit(x, z) = ‖vm1(x) − x‖2 + ‖vm2(z) − z‖2.

That is, when x, z ∈ B, x 6= z, we calculate crit(x, z) and
crit(z, x).

iii. We find the minimal value of crit(x, z) over all ordered subsets
of B of size 2.
When (x0, z0) achieves the minimum, set

vm(x0) = vm1(x0).

iv. Set
X0 = X0 \ {x0}, Y0 = Y0 \ {vm1(x0)}.

and for each x ∈ X0 we find the closest y ∈ Y0, and set
vm1(x) = y.
The idea is that we do not simply choose from B the vector
which is closest to y but take into account whether the choice
allows further good choices: we take into account the distance
to the second best choice to guarantee that there remains
potential for further good choices.

4. Set vm(x) = vm1(x) for those x for which vm(x) was not yet deter-
mined and return vm.
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