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Summary

We present algorithms for finding the level set tree of a multivariate density
estimate. That is, we find the separated components of level sets of the esti-
mate for a series of levels, gather information on the separated components,
such as volume and barycenter, and present the information together with
the tree structure of the separated components. The algorithm proceeds by
first building a binary tree which partitions the support of the density esti-
mate, followed by bottom-up travels of this tree during which we join those
parts of the level sets which touch each other. As a byproduct we present
an algorithm for evaluating a kernel estimate on a large multidimensional
grid. Since we find the barycenters of the separated components of the level
sets also for high levels, our method finds the locations of local extremes of
the estimate.
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1 Introduction

We are interested in making inference on the shape of a multivariate density
function by studying level sets

Λλ = {x ∈ Rd : f̂(x) ≥ λ}

for a number of different levels λ ∈ R, where f̂ : Rd → R is a density esti-
mate based on a sample X1, . . . , Xn ∈ Rd. Shape characteristics of a density
function include the number and location of modes, relative largeness of the
modes, skewness, kurtosis, and the tail behavior of the function. Finding in-
formation on the shape characteristics of a multivariate function is a complex
task, and the mere ability to evaluate the function does not imply that we are
in a position to find the shape of the function. The level set based approach
which we consider is a promising approach for the problem of visualization
of multivariate functions.

Level set tree plots as an exploratory tool in multivariate density estimation
were introduced in Klemelä (2004). Level set tree plots include volume plot

and barycenter plot. Volume plot visualizes the number and relative largeness
of the modes of the density, and gives information on the kurtosis. In Section
3 we show examples of volume plots (see Figure 4). Barycenter plot draws
the “skeleton” of the function, visualizing locations of the barycenters of the
level sets, in particular the locations of the modes, and giving information on
the skewness.

Level sets has been applied in density estimation and mode detection in 3 and
4 dimensional cases for example by Scott (1992) and Härdle and Scott (1992),
who present a sliding technique for visualizing 4 dimensional functions. They
visualize 3D density contours as the fourth variable is changed over its range.
Our aim is to apply level sets in arbitrary dimension with the help of level
set tree plots.

Calculating the level set tree plots requires performing the following tasks:
for some grid of levels,

1. partition each level set to pairwise separated components so that each
component is connected, and form the level set tree, and

2. calculate volume and barycenter for each separated component of each
level set.

(The concepts of “separated” sets and a “connected” set are defined in page
7.) Level set tree of a piecewise constant function is a tree structure formed
by taking as root nodes the pairwise separated and connected regions of the
support of the function. The child nodes of a given node are those pairwise
separated and connected regions of the level set corresponding to the one



3

step higher level than the level of this parent node, which are subsets of the
parent node. Level set trees for continuous functions are constructed by first
discretizing the function.

Our approach to the calculation of the level set tree is the following.

1. We represent the function (density estimate) with the help of an eval-

uation tree. Evaluation tree is a binary search tree which defines a
partition of the support of the function. The function is approximated
with a function which is constant over the sets of the partition.

2. We find the separated and connected components of level sets with
bottom-up travels of the evaluation tree. Those terminal nodes of the
evaluation tree which are close to each other in the tree structure cor-
respond to sets of the partition which are spatially close. During the
travel of the tree we join always those sets which are touching (are not
separated).

We consider three types of estimates in this article: (1) kernel estimates,
(2) CART histograms, and (3) aggregated estimates. CART (classification
and regression tree) histograms were defined in Breiman, Friedman, Olshen
and Stone (1984). Aggregated estimates are enhancements of simple esti-
mates with bagging (bootstrap aggregation) and boosting. These methods
increase granularity of simple estimates, for example CART-histograms. Av-
erage shifted histograms (ASH), as introduced by Scott (1985), fall also in
the category (3) of aggregated estimators. We will not study new density
estimation methods, but want to present algorithms for the manipulation of
level sets of some common classes of estimators.

Even when we are not interested in the calculation of the level set tree, the
method of evaluation trees provides a method for evaluating kernel estimates
on a large multidimensional grid. The method of evaluation trees may also
be combined with binning, since we may store the information on the bins in
evaluation trees.

Although we specialize to the case of density estimates, the algorithms of this
article apply to the manipulation of level sets of quite general multivariate
functions. In particular, manipulation of level sets of estimates of regression
functions is of interest.

Implementations of the algorithms of this article may be found from R-
package “denpro” which can be downloaded from http://www.denstruct.net.

In Section 2.1 we define the evaluation tree, Section 2.2 gives an algorithm
for finding the level set tree, Section 2.2.1 gives an algorithm for decomposing
a single level set to separated and connected components, Section 2.2.2 gives
some detailed pseudo codes for the algorithm of Section 2.2.1. Section 3 gives
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details for the case of calculating level set trees for kernel estimates, CART
histograms, and aggregated estimates.

2 Finding the level set tree with the help of

an evaluation tree

We define first the evaluation tree in Section 2.1. The algorithm for finding
the level set tree which we present in Section 2.2 presupposes that the function
is represented with an evaluation tree.

2.1 Evaluation tree of a function

We create a binary search tree to store a setwise constant function (or a
setwise constant approximation of a function). We call this tree the evaluation
tree.

Definition 1 An evaluation tree is any tree satisfying the following proper-

ties.

1. The tree has a single root node, and every node has 0, 1, or 2 children.

2. Non-leaf nodes are annotated with a splitting direction k ∈ {1, . . . , d},
splitting point s ∈ R, a pointer to the left child, if it exists, and a

pointer to the right child, if it exists.

3. Every node of the tree is annotated with a rectangle R ⊂ Rd whose

sides are parallel to the coordinate axis. Given a non-leaf node which

is annotated with rectangle R ⊂ Rd, splitting direction k ∈ {1, . . . , d},
and splitting point s ∈ R, then denote R1 = {x ∈ R : xk ≤ s} and

R2 = {x ∈ R : xk > s}. We assume that splitting point s is such that

these sets have positive volume. If the node has left child, then this child

is annotated with R1 and if the node has right child, then this child is

annotated with R2.

4. Leaf nodes are annotated with real values. These values represent the

values of the function.

The function associated with the evaluation tree. An evaluation tree
represents a rectangularwise constant function. Evaluation tree T represents
the function

f̄(x) =
∑

A∈A

fAIA(x) (1)
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Figure 1: A partition generating tree. Figure 2 shows the annotations of the
nodes with rectangles.

where A is the collection of the annotations of the leaf nodes of T with
rectangles:

A = {A ⊂ Rd : A is a rectangle annotated with some leaf node of T } (2)

and fA ∈ R are the annotations of the leaf nodes of T with real values. We
denote IA(x) = 1 when x ∈ A and IA(x) = 0 otherwise.

Partition generating tree. The conditions 1-3 of Definition 1 define a
partition generating tree. The corresponding partition is given in (2). By
adding condition 4 to Definition 1 we make this partition generating tree an
evaluation tree.

Example. Figure 1 shows a partition generating tree. Figure 2 shows the
rectangles annotated with the nodes of this tree and the process of growing
this tree. We start with the rectangle [0, 4]× [0, 4]. We split first parallel to
y-axis making dyadic splits, and then parallel to x-axis.

Evaluation trees in density estimation. In density estimation piece-
wise constant functions may appear at least in two ways: (1) we construct
first a continuous density estimate, like a kernel density estimate, and then
approximate this continuous function with a piecewise constant function, or
(2) we construct directly a piecewise constant estimate, like in the case of
CART-histograms and aggregated estimates.
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Figure 2: The rectangles annotated with the nodes of the tree shown in
Figure 1, and the process of growing this tree.

By the definition of the evaluation tree, the root node of this tree is annotated
with a rectangleR0 and the evaluation tree generates a partition of R0. When
a density estimate vanishes in some regions of R0, we do not have to include
rectangles corresponding to those regions in the evaluation tree. For example,
the evaluation tree of Figure 1 does not have leaf nodes corresponding to all
regions of [0, 4]× [0, 4].

Advantages of the evaluation trees. There are two advantages we get
from representing piecewise constant functions with binary trees.

1. We are able to find fast the value f̄(x) at any x ∈ Rd, using the binary
search algorithm. Thus we are also able to refine fast the values of the
stored function. Refining may mean changing the value of the estimate
at some region. In the case of the function approximation refining
may mean splitting further some regions where the approximation was
constant, thus giving a more accurate approximation of the function.

2. Siblings in the evaluation tree of the function correspond to spatially
close sets. Thus we may apply a dynamic programming algorithm to
find separated components of the level sets. We make a bottom-up
travel of this tree, during which we join the unseparated parts of level
sets, thus solving the problem of finding separated components by solv-
ing a ”dual” problem of joining the unseparated components.

2.2 Finding the level set tree

We describe an algorithm for decomposing a single level set to separated and
connected components in Section 2.2.1. Section 2.2.2 gives a detailed pseudo
code for the algorithm. The algorithm for forming the level set tree which
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we describe in Section 2.2.3 is straightforward once we have an algorithm for
decomposing a single level set.

2.2.1 Decomposing a single level set to mutually separated and

connected components

The basic ingredient of our algorithm for creating the level set tree is to
decompose a single level set to the maximally separated components. In
fact, typically we want to decompose only a part of the whole level set. That
is, we want to decompose a part of the level set corresponding to a branch of
the level set tree. For simplicity we present the algorithm for the case when
we decompose the whole level set.

Definition of separated sets and a connected set. We say that sets
B,C ⊂ Rd are separated if inf{‖x − y‖ : x ∈ B, y ∈ C} > 0, where ‖ · ‖
is the Euclidean distance. Then we say that set A ⊂ Rd is connected if for
every nonempty B,C such that A = B ∪ C, B and C are not separated.

The problem statement. We want to make a decomposition of a level
set so that the members of the decomposition are mutually separated and
each is connected. Level sets Λλ of f̄ , defined in (1), have the form

Λλ = ∪A∈Aλ
A (3)

where
Aλ = {A ∈ A : fA ≥ λ} (4)

and A is defined in (2). Assume that function f̄ is the associated function
of some evaluation tree. Then it follows that the sets A in representation
(1) are rectangles. Rectangles are connected sets. Since sets A ∈ Aλ are
connected, our task is to find the partition {Aλ,1, . . . ,Aλ,M} of Aλ, so that
the following conditions are met.

1. Aλ = ∪M
i=1Aλ,i.

2. For i, j = 1, . . . ,M , i 6= j, ∪A∈Aλ,i
A and ∪A∈Aλ,j

A are separated.

3. For i = 1, . . . ,M , ∪A∈Aλ,i
A is connected.

Condition 1 says that we make a partition of set Λλ = ∪A∈Aλ
A to sets

∪A∈Aλ,i
A, i = 1, . . . ,M . Condition 2 says that the members of the partition

are pairwise separated. Condition 3 says that the members of the partition
are connected. Condition 3 implies that the partition is maximal in the sense
that trying to split some member of the partition will lead to a violation of
condition 2.
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A naive algorithm. A straightforward algorithm would compare all sets
A in the representation (3), with each other, to find which sets A touch each
other. However, this algorithm needs O((#Aλ)

2) steps, where #Aλ is the
cardinality of set Aλ. When this cardinality is very large, this is not a feasible
algorithm.

Algorithm. We give a pseudo code for the algorithm DynaDecompose

which decomposes a level set to maximally separated components. This algo-
rithm takes as an input the evaluation tree of the function. The leaf nodes of
this evaluation tree correspond to the lowest level set of the function defined
in (1). Thus we need a special labeling for the leaf nodes of the evaluation
tree which indicates which sets belong to collection Aλ defined in (4), which is
the collection of sets whose union is the level set Λλ. We travel the evaluation
tree starting from the leaf nodes of the tree.

1. Input of the algorithm is an evaluation tree of function defined in
(1) and a list Lλ which labels a subset of the terminal nodes of the
evaluation tree. (List Lλ corresponds to set Aλ.)

2. Output of the algorithm is a partition of Lλ, that is, a partition of Aλ.

ALGORITHM DynaDecompose

1. travel the evaluation tree, starting from the terminal nodes labeled by
the list Lλ; traveling has to proceed so that the children are encountered
before the parent;

(a) assume that we have encountered node m;

(b) if node m is a leaf node annotated with set A, then we annotate
node m with the partition {{A}};

(c) else (m is not a leaf) we check whether there are connections
with the sets in the partitions which are annotated with left and
right child, and annotate node m with the partition joining the 2
partitions;

2. end travel

3. return the partition which is annotated with the root node

Section 2.2.2 gives a more precise pseudo code for the algorithm. Especially
step 1(c) is rather complex, requiring to make a pairwise comparison of all
“current components”. In the general case, when we decompose a subset of
level set Λλ, then we give as input a list Lλ,0 ⊂ Lλ.
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Figure 3: The process of finding the two separated regions of a level set of
an estimate. Figure 1 shows the corresponding evaluation tree.

Example. Figure 3 illustrates the evolution of the algorithm. We assume
that the evaluation tree of the function is given in Figure 1. We assume
that the function is positive on all the rectangles corresponding to the leafs
of the evaluation tree and we want to decompose the lowest level set to the
separated components. The first window shows how we have formed 1 × 2
rectangles. Then we join subsets inside the 1× 4 rectangles to get window 2.
Then we join subsets inside the 2 × 4 rectangles to get window 3. Then we
join subsets inside the 4 × 4 rectangle to get the 4th window, which shows
that the support of the function consists of two separated and connected
components.

2.2.2 Detailed pseudo code for the algorithm DynaDecompose

We give a more precise pseudo code for the algorithm DynaDecompose

than the peudo code given in Section 2.2.1.

The algorithm proceeds by joining those sets in the partitions annotated with
the two children which are touching each other. (Partitions are represented
as lists of lists of terminal nodes of the evaluation tree.) To find which sets
are touching each other we have to travel through the boundaries of the sets.
We have to consider 4 cases, corresponding whether left and right children
exist, and whether the boundaries of the left and right children are empty or
not.

1. Input and Output of the algorithm are given in page 8.

2. Internal data structures of the algorithm are the following. We as-
sociate to every node m of the evaluation tree 3 lists of lists of terminal
nodes of the evaluation tree: a list of lists DC(m) of nodes in the sepa-
rated components, a list of lists LB(m) of nodes in the left boundaries
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of the separated components, and a list of lists RB(m) of nodes in the
right boundaries of the separated components.

ALGORITHM DynaDecompose

1. travel the evaluation tree, starting from the terminal nodes labeled by
the list Lλ; traveling has to proceed so that the children are encountered
before the parent;

2. assume we have encountered node m;

3. if node m is a leaf node then we annotate node m with the partition
consisting of the single rectangle which is annotated with this leaf node;

4. else (m is not a leaf node)

(a) if left child of m does not exist, then

i. the separated parts of m are inherited from the right child rm
(which exists): DC(m) = DC(rm);

ii. the left boundary of m is empty: LB(m) is empty list;

iii. the right boundary of m is the right boundary of the right
child: RB(m) = RB(rm);

(b) else, if the right child does not exist, then

i. the separated parts of m are inherited from the left child lm
(which exists): DC(m) = DC(lm);

ii. the left boundary of m is the left boundary of the left child:
LB(m) = LB(lm);

iii. the right boundary of m is is empty: RB(m) is empty list;

(c) else, if the left boundary of the right child is empty or the right
boundary of the left child is empty (so that there exists no con-
nections between the sets of the left child and the sets of the right
child), then

i. the separated parts of m are inherited from the children, no
parts are joined: DC(m) is the concatenation of DC(lm) and
DC(rm);

ii. the left boundary of m is the left boundary of the left child
(possibly empty): LB(m) = LB(lm);

iii. the right boundary of m is the right boundary of the right
child (possibly empty): RB(m) = RB(rm);

(d) else, (both children exist and both boundaries are non-empty);



11

i. the separated parts are the result of joining the separated
components of the left child and the right child: DC(m) is
formed by pairwise comparison of boundaries of components
in DC(lm) and DC(rm) to find which components touch each
other, and then concatenating the components which touch
each other;

ii. the left boundaries of m are the left boundaries of the left
child (possibly some are joined): take LB(m) = LB(lm) and
then concatenate those lists for which the corresponding lists
in DC(lm) were concatenated in step 4(d)i to get DC(m);

iii. the right boundaries of m are the right boundaries of the right
child (possibly some are joined): take RB(m) = RB(rm) and
then concatenate those lists for which the corresponding lists
in DC(rm) were concatenated in step 4(d)i to get DC(m);

(e) end if

5. end if

6. end travel

7. return DC(m) where m is the root node of the evaluation tree

The step 4(d)i is the most complex part of the algorithm. At this step we
make pairwise comparisons of sets to find which sets touch each other. Note
that in step 4(d)i we do not need always run through the complete boundaries,
since we may stop immediately if we find a connection. Steps 4(a)-4(c) of the
algorithm are only bookkeeping.

For completeness, we give the algorithm PairwiseComparison which is
used in step 4(d)i to find which components of the left and the right child
touch each other. Note that this is the “naive algorithm” mentioned in page
8.

1. Input is a collection A of sets. In our application A is the collection
of the intersections of the disconnected components, of the left and the
right child, with respective boundaries. Furthermore, these intersec-
tions are unions of rectangles.

2. Output is a partition P of A. This partition is initialized to be empty.
The partition consists of separated components and each is connected.

3. An internal data structure is stack S of sets, which is initialized to
be empty.

ALGORITHM PairwiseComparison
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1. first loop: go through the collection of sets A, consider A ∈ A;

2. if set A is not already a member of some set in P;

(a) start creating a new component C, by initializing component C to
be empty;

(b) put A to the stack S (stack S will contain sets whose union is a
connected component whose one member is A);

(c) while stack S is not empty;

i. take from stack S set B;

ii. include B to the current component C;

iii. second loop: go through sets in A, consider set C;

A. if C touches set B and is not already in set C, then put
C to the stack S;

iv. goto second loop

(d) goto while

(e) current component C will be added to P

3. end if

4. goto first loop

5. return P

2.2.3 The algorithm for finding the level set tree

A level set tree is a tree structure formed by taking as root nodes the max-
imally separated regions of the support of the function. The child nodes
of a given node consist of the maximally separated regions of the level set
corresponding to the one step higher level than the level of this parent node.

The algorithm for forming the level set tree is now straightforward. We may
build the level set tree by starting from the root nodes, traveling towards up-
per levels, and always decomposing parts of the level sets with the algorithm
DynaDecompose.

3 Examples

The general algorithm of Section 2.2 take as an input an evaluation tree,
defined in Section 2.1. We give examples of creating the evaluation tree. We
discuss the cases of kernel estimates, CART, and aggregated estimates.
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3.1 Kernel estimates

Kernel estimator, based on sample X1, . . . , Xn ∈ Rd, is defined as

f̂(x) =
1

nhd

n∑

i=1

K((x−X i)/h), x ∈ Rd, (5)

where h > 0 is the smoothing parameter and K : Rd → R is the kernel
function.

Discretization of the kernel estimate. We evaluate the kernel estimate
on a grid which lies on a rectangle which contains the support of the estimate.
Let G be the set of grid points where the estimate is positive. We consider
the function

f̄(x) =
∑

g∈G

f̂(g)IR(g)(x), x ∈ Rd

where R(g) is the rectangle whose center is g and whose sidelengths are equal

to the steps of the grid, and f̂ is defined in (5).

Splitting strategies. An evaluation tree for kernel estimates may be con-
structed in several ways. Typically we start with the smallest rectangle con-
taining the support of the kernel estimate. An evaluation tree may be formed
by splitting one direction at a time, and after reaching the finest resolution
of the grid in a given direction we move to the splitting of the next direc-
tion. Figure 2 shows the process of splitting in this way. Figure 1 shows the
corresponding evaluation tree. An alternative way of creating an evaluation
tree of a kernel estimate would be to alternate the direction of splitting. It
is also important to consider non-regular partitions. For example, we may
make approximation more accurate at some regions by growing the evalua-
tion tree larger at those regions. Then the evaluation tree is not balanced
like in Figure 2.

An algorithm for creating the evaluation tree. We evaluate the kernel
estimate at the grid points by going through the observations, finding which
gridpoints belong to the support of the kernel centered at the current obser-
vation, and updating the value of the estimate at those grid points. Since
we create a binary search tree from the grid points where the estimate is
positive, we are able to find fast, whether a given grid point already exists in
the tree, and if it exists, update the value of the estimate at this grid point.
We present the algorithm for the case where the grid points are regularly
spaced in each direction, but the number of grid points may be different in
different directions. We do not fix otherwise the splitting strategy.
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1. Input of the algorithm are the observations X1, . . . , Xn ∈ Rd, kernel
function K : Rd → R, smoothing parameter h > 0, and vector δ =
(δ1, . . . , δd) of the steplengths of the grid. Algorithm supposes that
kernel K has a compact support.

2. Output of the algorithm is an evaluation tree.

ALGORITHM ETofKDE (evaluation tree of a kernel density estimate)

1. Find the smallest rectangle containing the support of the kernel esti-
mate (5), whose sides are parallel to the coordinate axis. The root node
of the evaluation tree will be annotated with this rectangle. We will
evaluate the kernel estimate on the regular grid lying on this rectangle,
with stepsizes given by vector δ;

2. for i=1 to n (go through observations X1, . . . , Xn);

(a) denote with y1, . . . , ym ∈ Rd the grid points which lie on the
support of function x 7→ K((x−X i)/h), x ∈ Rd;

(b) for j=1 to m (go through gridpoints y1, . . . , ym);

i. if the evaluation tree of the kernel estimate already contains
gridpoint yj , then add the value (nhd)−1K((yj − X i)/h) to
the current value at this gridpoint;

ii. else create the node for gridpoint yj and store to this node
the value (nhd)−1K((yj −X i)/h)

(c) end for

3. end for

In step 2(b)i we apply the binary search algorithm to find out whether the
evaluation tree already contains the gridpoint yj .

Product kernels and the number of grid points. Kernels of product
form are computationally attractive. Let

K(x) = Πd
i=1L(xi), x = (x1, . . . , xd), (6)

where L : [−1, 1] → [0,∞). One may for example choose L to be a trunca-
tion of a Gaussian density function, or the Bartlett-Epanechnikov polynomial
L(t) = (3/4)(1− t2)+ where (x)+ = max{x, 0}. Denote with M the number
of gridpoints where the kernel estimate is positive. When the distance be-
tween grid points in direction i is δi, i = 1, . . . , d, and when the kernel has
the product form (6), then

M ≤ nΠd
i=1(2hδ

−1
i ). (7)

Note that typically h ≍ n−1/(4+d).
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Number of nodes of the evaluation tree. We may give an upper bound
for the number of nodes of the evaluation tree of the kernel estimate. Eval-
uation tree has depth

D = 1 +
d∑

i=1

log2 Ni, (8)

where Ni is the number of grid points in direction i. For the storing of the
evaluation tree we need vectors whose length is at most D ·M , where M is
the number of gridpoints where the estimate is positive, bounded in (7).

Extensions of the algorithm.

1. Grid of smoothing parameter values. Typically we want to evalu-
ate the kernel estimate for a grid of smoothing parameter values. The
above algorithm may be modified for this case. The evaluation tree cor-
responding to the estimate with the largest smoothing parameter value
contains as subtrees the evaluation trees of the other estimates. Thus
we annotate the leaf nodes of this largest evaluation tree with vectors
whose length is equal to the number of different smoothing parameters,
and the elements of the vector give the values of the estimates for dif-
ferent smoothing parameter values. Some of the entries of the vector
will be 0.

2. Further growing. We may want at a later stage continue growing the
evaluation tree to give a better approximation of the kernel estimate.
To facilitate this we need to add pointers to the observations in leaf
nodes. Thus we store slightly more information than in the case of
binning, where only the frequencies need to be stored. When we store
pointers to the observations, we do not have to go again through all
observations in order to continue the growing of the tree. Note that
the evaluation tree may be grown only locally in a neighborhood of a
given point.

Other methods. At least the following proposals have been made for the
fast computation of kernel estimates.

1. Binning. Binning in the one dimensional case was discussed in Fan
and Marron (1994). Calculation of multivariate kernel estimates with
binning was considered in Wand (1994) and the accuracy of binned
kernel estimators was studied in Hall and Wand (1996). Accuracy and
complexity of binning was studied by Holmström (2000).

2. An updating method. Seifert, Brockmann, Engel and Gasser (1994)
consider an updating method for polynomial kernel functions. They
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expand a kernel estimate f̂(x) in sums of powers of X i, and update
these sums when moving to nearby values of x. To our knowledge this
method has been implemented only in the one dimensional case.

We do not have to consider binning as an alternative to the method of eval-
uation trees, since the evaluation tree is also a useful data structure to be
used to store the result of binning. In this case every leaf node is annotated
with a bin and a weight of this bin.

Evaluation at predetermined points vs. evaluation at arbitrary

points. Algorithm ETofKDE evaluates the kernel estimate at a predeter-
mined grid. We have 2 possibilities for evaluating the kernel estimate at
arbitrary points: (1) we may apply binning or (2) we may evaluate kernel es-
timate at the knots of a grid and then use interpolation at the other points.
Besides piecewise constant interpolation we may apply quadratic or cubic
interpolation.

Direct level set estimation. Since the manipulation of level sets of kernel
estimates is computationally expensive, one has proposed kernel type meth-
ods for the direct estimation of level sets. These estimates are unions of balls
centered at some subset of observations, see for example Devroye and Wise
(1980), Korostelev and Tsybakov (1993), Walther (1997), Báıllo, Cuevas and
Justel (2000), Báıllo, Cuesta-Albertos and Cuevas (2001). However, even
when one may store these estimates of level sets efficiently, manipulating
of the estimates is still complex. Also, these estimates involve additional
smoothing parameters (in particular, the radius of the balls centered at the
observations) and statistical theory for choosing these smoothing parameters
is not yet available.

Example. Let fl : R
2 → R be the equal mixture of 3 standard Gaussian

densities, located on the vertices of a triangle with sidelengths D. Let

f(x) = fl(x1, x2)Π
d
i=3fi(xi), x ∈ Rd, (9)

where fi, i = 3, . . . , d, are univariate Gaussian densities with zero expectation
and with variance 1+D2/6 (which is also the marginal variance of coordinates
1 and 2). This example is a generalization of the projection pursuit example
introduced in Friedman, Stuetzle and Schroeder (1984) and studied by Scott
and Wand (1991). Density f has a 2-dimensional structure (3 modes), and
other dimensions are “noise dimensions”.

Figure 4 a) shows an example of (the central region of) a volume plot of a
kernel estimate. We have d = 4, D = 4, and sample size is 2000. Smooth-
ing parameter is h = 1.4 and Bartlett-Epanechnikov product kernel is used.
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Figure 4: Three density estimates from 4D, 10D, and 5D projection pursuit
data.

Estimate is discretized to 164 gridpoints and 60 levels. The calculation took
about 40 seconds on a PC.

3.2 CART-histograms

CART (Classification and regression tree) is a famous procedure for creat-
ing adaptive histograms. It was introduced by Breiman et al. (1984). For
a description of CART-type methods in density estimation and for further
references, see Holmström, Hoti and Klemelä (2005).

The definition of CART is given in terms of an evaluation tree. In CART
type methods the estimate is formed by a a two step procedure. First a
large evaluation tree is grown by myopic (greedy) splitting of the sample
space minimizing an empirical error criterion. Secondly this evaluation tree
is pruned by minimizing an error-complexity criterion.

Example. Figure 4 b) shows an example of (the central region of) a volume
plot of a CART-histogram. We took a sample from the density defined in (9)
with d = 10, D = 6, and sample size 1000. The estimate has 33 cells. The
calculation took few seconds on a PC.

3.3 Aggregated estimates

ASH. Average shifted histograms were introduced in Scott (1985). Average
shifted histograms are averages of regular histograms. As the number of
averaged histograms increases, ASH approximates the kernel estimate whose
kernel function is the product of triangular kernels L(t) = (1− |t|)+.
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Bagging. Bootstrap aggregation was introduced by Breiman (1996a) and
Breiman (1996b). In bagging we generate bootstrap samples from the origi-
nal sample, produce unstable estimates (adaptive histograms) based on each
bootstrap sample, and define the final estimate as the arithmetic mean of
the estimates in the sequence. Bagging is a method to decrease variabil-
ity of an unstable estimator. Bagging has been applied most successfully in
classification, but see Holmström et al. (2005) for an application in density
estimation.

Boosting. Boosting was introduced by Schapire (1990), Freund (1995),
Freund and Schapire (1996). In the original boosting a weighted empirical
risk is minimized, and the weights of the observations are adjusted in a step-
wise manner, so that the weights of the observations at which the current
estimate is inaccurate are increased. The final estimate is a weighted average
of the estimates in the sequence. Boosting is a method to decrease the bias
of the estimates.

An algorithm for creating an evaluation tree for aggregated esti-

mates. We need an algorithm for creating an evaluation tree for a function
which is a convex combination of rectangularwise constant functions. The
problem may be reduced to the problem of creating an evaluation tree for a
function which is a weighted average of two rectangularwise constant func-
tions, when we have evaluation trees for these two functions. The general
case will then be handled with the iteration of this procedure. The straight-
forward method of adding two evaluation trees is to go through the leaf nodes
of the first tree, and to make a partition for each rectangle annotated with a
leaf node by making the intersection between this rectangle and the partition
generated by the second evaluation tree. Thus, the algorithm amounts to
making the overlaying of two partitions. Figure 5 illustrates overlaying of
two partitions.

Example. Figure 4 c) shows an example of (the central region of) a volume
plot of a bagged histogram. We took a sample from the density defined in (9)
with d = 5, D = 5, and sample size 1500. The estimate is the average of 5
CART histograms, which were pruned to have 15 cells. We applied n/2-out-
of-n without replacement bootstrap. The calculation took about 10 seconds
on a PC.

Let us summarize Figure 4. All the estimates detected the 3 modes. The
kernel estimator is statistically and computationally inefficient for high di-
mensional data, but works for moderate dimensional data. CART histograms
are computationally efficient for high dimensional data, and we may increase
statistical efficiency of these estimates with aggregation, but with a cost of



19

−4 −2 0 2 4

−
4

−
2

0
2

4

a) partition to 9 rectangles

−4 −2 0 2 4

−
4

−
2

0
2

4

b) partition to 9 rectangles

−4 −2 0 2 4

−
4

−
2

0
2

4

c) partitions a) and b) overlayed

Figure 5: Two partitions and their overlaying. The data is generated from
the density defined in (9) with d = 2, D = 6, and sample size 225.

computational efficiency.
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